Alice Schoenauer Sebag, PhD

Alice Schoenauer Sebag

AI Safety at Cohere | ex-Twitter, ex-IGF

Publications

2025

The Multilingual Divide and Its Impact on Global AI Safety

A. Peppin, J. Kreutzer, A. Schoenauer Sebag, K. Marchisio, B. Ermis, J. Dang, S. Cahyawijaya, S. Singh, S. Goldfarb-Tarrant, V. Aryabumi, Aakanksha, W.-Y. Ko, A. Üstün, M. Gallé, M. Fadaee, S. Hooker

arXiv:2505.21344 (2025)

Command A: An Enterprise-Ready Large Language Model

T. Cohere, A. Ahmadian, M. Ahmed, J. Alammar, M. Alizadeh, Y. Alnumay, ... A. Schoenauer Sebag, et al.

arXiv:2504.00698 (2025)

2024

Introducing v0.5 of the AI Safety Benchmark from MLCommons

B. Vidgen, A. Agrawal, A. M. Ahmed, ... A. Schoenauer Sebag, et al. (100+ authors)

arXiv:2404.12241 (2024)

2023

Assessing Online True Threats and Their Impacts: The New Standard of Counterman v. Colorado

J. Kovacs-Goodman, A. Schoenauer Sebag

Harvard Journal of Law & Technology (2023)

A Keyword Based Approach to Understanding the Overpenalization of Marginalized Groups by English Marginal Abuse Models on Twitter

K. Yee, A. Schoenauer Sebag, O. Redfield, M. Eck, E. Sheng, L. Belli

Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP), ACL 2023

2022

Can we get smarter than majority vote? Efficient use of individual rater's labels for content moderation

C. Shin, A. Schoenauer Sebag

Efficient Natural Language and Speech Processing (ENLSP), NeurIPS Workshop (2022)

2021

What 3.5 million French firms can tell us about the efficiency of Covid-19 support measures

B. Coeuré et al.

Committee on the monitoring and evaluation of financial support measures (2021)

2019

Multi-Domain Adversarial Learning

A. Schoenauer Sebag, L. Heinrich, M. Schoenauer, M. Sebag, L. F. Wu, S. J. Altschuler

International Conference on Learning Representations (ICLR 2019)

2017

Stochastic Gradient Descent: Going As Fast As Possible But Not Faster

A. Schoenauer Sebag, M. Schoenauer, M. Sebag

OPT 2017: 10th NIPS Workshop on Optimization for Machine Learning

2015

The versatility of high-content high-throughput time-lapse screening data: developing generic methods for data re-use and comparative analyses

A. Schoenauer Sebag

PhD thesis, Mines ParisTech (2015)

A generic methodological framework for studying single cell motility in high-throughput time-lapse data

A. Schoenauer Sebag, S. Plancade, C. Raulet-Tomkiewicz, R. Barouki, J.-P. Vert, T. Walter

Bioinformatics, 31(12):i320-i328 (2015)

Infering an ontology of single cell motions from high-throughput microscopy data

A. Schoenauer Sebag, S. Plancade, C. Raulet-Tomkiewicz, R. Barouki, J.-P. Vert, T. Walter

Proceedings of the 12th IEEE International Symposium on Biomedical Imaging (ISBI):160-163 (2015)